Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions

In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...

متن کامل

the operational matrix of fractional derivative of the fractional-order chebyshev functions and its applications

in this paper, we introduce a family of fractional-order chebyshev functions based on the classical chebyshev polynomials. we calculate and derive the operational matrix of derivative of fractional order $gamma$ in the caputo sense using the fractional-order chebyshev functions. this matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

متن کامل

Study on multi-order fractional differential equations via operational matrix of hybrid basis functions

In this paper we apply hybrid functions of general block-pulse‎ ‎functions and Legendre polynomials for solving linear and‎ ‎nonlinear multi-order fractional differential equations (FDEs)‎. ‎Our approach is based on incorporating operational matrices of‎ ‎FDEs with hybrid functions that reduces the FDEs problems to‎ ‎the solution of algebraic systems‎. ‎Error estimate that verifies a‎ ‎converge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 2014

ISSN: 0307-904X

DOI: 10.1016/j.apm.2014.04.064